Math 115
Summer 2017
Lecture 5

Introduction to Graphing Rectangular Coordinate System

Plot $A(2,5), B(-3,0), C(0,-4)$,
Draw triangle $A B C$

Draw $A B C D$ shape where $A(-4,3)$, $B(0,7), C(4,0)$, and $D(0,0)$, then Shade the region inside.

Lines

1) Vertical
2) Horizontal
3) Slant

$$
\begin{aligned}
& x=a \\
& x=4 \\
& x=-2 \\
& x-3=0
\end{aligned}
$$

$$
\begin{aligned}
& y=b \\
& y=5 \\
& y=-7 \\
& y+2=0
\end{aligned}
$$

$$
A x+B y=C
$$

$$
y=m x+b
$$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
x+3 y=-9
$$

$$
\begin{aligned}
& y-3=4(x+5) \\
& y+2=\frac{-2}{3}(x-3)
\end{aligned}
$$

$$
2 x-5 y=10
$$

$$
y=\frac{2}{3} x-4
$$

$$
y=\frac{-3}{5} x+7
$$

Draw $\quad x=4$; $y=-3$

Draw $\quad x+5=0, y-2=0$

Draw $x=3, y=-5, x=-2$, and $y=4$.
shade the region bounded by all four lines, then find its area.

$$
\begin{aligned}
& L=9, W=5 \\
& A=L W \\
& A=45 \text { units }
\end{aligned}
$$

Slant lines:
Standard Form $A x+B y=C$
Slope-Int form $y=m x+b$
Point-slope form $y-y_{1}=m\left(x-x_{1}\right)$
$2 x \operatorname{stan} \operatorname{con} y=21, \quad y=\frac{-3}{5} x+4$, slope- Int
$y+7=\frac{-1}{2}(x-4) \quad$ Point-Slope

Graphing standard form eqn of slant line:

$$
2 x-3 y=6
$$

$$
\begin{array}{c|c}
x & y \\
\hline 0 & \\
\hline & 0
\end{array}
$$

Intercept Method

Graph using intercept Method:

$$
3 x-4 y=-12
$$

x	y
0	3
-4	0

Graph $2 x+5 y=10, x=-3$, and $y=-4$.
Shade the region that is bounded by all three lines.

$$
\begin{array}{r}
2 x+5 y=10 \\
x \mid y \\
\hline 0 \\
\hline 5
\end{array}
$$

Slope m is ratio of Rise to Run $m=\frac{2^{0}}{3^{\sigma}} 2$ units up $\dot{\text { Run }} \quad 3$ units right

$$
m=4=\frac{4 \propto \text { Rise }}{1 \& \text { Run }}
$$

3 units down \& 5 units right. $m=-2=\frac{-2}{1} \Leftarrow$ Rise

Draw a line that contains $(-4,2)$ with slope $\frac{3}{5}$.

Draw a line that contains $(0,-2)$ with Slope $\frac{-3}{4}$ Rise

Draw two lines that contain $(3,4)$, one with slope $\frac{2}{3}$, and another one with slope $\frac{-3}{2}$.

Draw two lines with Same slope $\frac{2}{5}$, one contains $(0,4)$, another one contains $(5,0)$.

Solve for y :

$$
\begin{aligned}
& 3 x+2 y=4 \\
& 2 y=-3 x+4 \\
& y=\frac{-3}{2} x+\frac{4}{2} \\
& y=\frac{-3}{2} x+2
\end{aligned}\left\{\begin{array}{l}
4 x-3 y=9 \\
-3 y=-4 x+9 \\
y=\frac{-4}{-3} x+\frac{9}{-3} \\
y=\frac{4}{3} x-3
\end{array}\right.
$$

Solve for y, Simplify

$$
\begin{aligned}
& y+3=\frac{2}{3}(x-6) \\
& y+3=\frac{2}{3} x-\frac{2}{3} \cdot 6 \\
& y+3=\frac{2}{3} x-4 \\
& y=\frac{2}{3} x-4-3 \\
& y=\frac{2}{3} x-7
\end{aligned}\left\{\begin{array}{l}
4 x-5 y \leq 10 \\
-5 y \leq-4 x+10 \\
\frac{-5}{-5} y \geq \frac{-4}{-5} x+\frac{10}{-5} \\
y \geq \frac{4}{5} x-2
\end{array}\right.
$$

Solve $3 x+8 \leq 5 x+12$

$$
\begin{array}{ll}
\begin{array}{ll}
3 x-5 x \leq 12-8 \\
-2 x \leqslant 4 & \text { 1)S.B.N. }\{x \mid x \geq-2\} \\
\frac{-2}{-2} x \geq \frac{4}{-2} & \text { 2) graphing } \\
x \geq-2 & \text { 3) I.N. }[-2, \infty
\end{array}
\end{array}
$$

Solve

$$
\begin{gathered}
-5 \leq 3 x+1<16 \\
-5-1 \leq 3 x+1-1<16-1 \\
-6 \leq 3 x<15 \\
\frac{-6}{3} \leq \frac{3}{3} x<\frac{15}{3} \\
-2 \leq x<5
\end{gathered}
$$

(1)S.B.N.
(2) Graph
(3)I.N.

$$
\{x \mid-2 \leq x<5\} \stackrel{-2}{5}[-2,5)
$$

$$
\begin{aligned}
& \text { Solve } \frac{1}{4} x-\frac{5}{6}>\frac{2}{3} x+\frac{1}{2} \quad \begin{array}{l}
\text { Hint: Use LCD } \\
\text { to clear Fractions }
\end{array} \\
& L C D=12 \\
& { }^{3} 2 \cdot \frac{1}{4} x-2 \times \frac{5}{8}>12 \cdot \frac{4}{3} x+12 \cdot \frac{6}{2} \\
& 3 x-10>8 x+6 \text { IS.B.N. } \\
& 3 x-8 x>6+10
\end{aligned}
$$

$$
\begin{aligned}
& (-\infty,-3.2) \quad x<\frac{16}{-5} \quad x<-3.2 \\
& \{x \mid x<-3,2\} \\
& \text { (2) Graph }
\end{aligned}
$$

$$
-2<x \leq 4
$$

(1) write in S.B.N. $\{x \mid-2<x \leq 4\}$
(2) Graph

(3) I.N.
$(-2,4]$
Is 0 a Solution for $\sqrt{0}-\sqrt{0+4}=2$

$$
\sqrt{x}-\sqrt{x+4}=2 ? \quad \begin{array}{r}
\sqrt{0}-\sqrt{4}=2 \\
\text { Not } \\
0 \\
-2=2
\end{array}
$$ false

Is -3 a solution of $|2 x-4|=10$?

$$
|2(-3)-4|=10
$$

$|-6-4|=10$

$$
\begin{aligned}
|-10| & =10 \\
10 & =10
\end{aligned}
$$

Perimeter of a rectangle is 148 ft .
Its length is 2 ft longer than 3 times its width. find the measure of its length.

$$
\begin{gathered}
P=148 \\
2 L+2 W=148 \\
2(3 x+2)+2(x)=148
\end{gathered}
$$

$$
L=3(18)+2
$$

$$
=56
$$

$$
x=18
$$

The length of a rectangular pool is 3 m Shorter than 4 times its width.
The perimeter is 164 m .
find its area.

$$
\begin{gathered}
P=164 \\
2 L+2 w=164 \\
2(4 x-3)+2 x=164 \\
\vdots \\
x=17
\end{gathered}
$$

$17 m$

$$
L=4 x-3
$$

$$
L=4(17)-3
$$

$$
L=65
$$

$$
\begin{aligned}
& A=L W \\
& A=1105 \mathrm{~m}^{2}
\end{aligned}
$$

2.5 inches on the map is 400 miles in actual distance. Two Cities are 8 inches apart on the map. find actual distance using Proportion. $\frac{2.5 \text { inches }}{400 \text { Miles }}=\frac{8 \text { inches }}{x \text { Miles }}$

$$
\begin{aligned}
& 2.5 x=8(400) \\
& x=\frac{8(400)}{2.9} \quad x=1280
\end{aligned}
$$

1280 miles

What percent of 400 is 700 ?

$$
\begin{aligned}
& \frac{p}{100}=\frac{700}{400} \\
& 400 p=100(700) \\
& P=175
\end{aligned}
$$

Simplify

$$
\begin{aligned}
& \frac{-3}{4}\left(8 x^{2}-4 x+\frac{4}{3}\right)+7 x^{2}-3 x+1 \\
= & \frac{-3}{4} \cdot \% x^{2}-\frac{3}{x} \cdot(-4 x)-\frac{3}{4} \cdot \frac{4}{3}+7 x^{2}-3 x+1 \\
= & -6 x^{2}+3 x-1+7 x^{2}-3 x+1=x^{2}
\end{aligned}
$$

Graph $[-4,6$) on the number-line Sys.

S.B.N. $\quad\{x \mid-4 \leq x<6\}$

Graph $[-3, \infty)$ on the number line system. Give your answer in S.B.N.

John has 79 Coins.
Nickels, Dimes, and Quarters only.
The number of dimes is twice the $\#$ of nickels.
The number of quarters is 1 more than three times the $\#$ of nickels.

How much money does John have?

Nickels	Dimes	Quarters.
x	$2 x$	$3 x+1$

$$
\begin{gathered}
\frac{\text { Nickels }}{x}+\frac{\text { Dimes }}{2 x}+\frac{\text { Quarters. }}{3 x+1}=79 \\
x+2 x+3 x+1=79 \\
\vdots \\
x=13 \quad 13 \text { Nickels } \\
26 \text { Dimes } \\
40 \text { Quarters } \\
13(.05)+26(.10)+40(.25)=\$ 13.25
\end{gathered}
$$

Exam I:
Part I: Show work
Part II: Multiple choice

Consecutive Integers:

Find two consecutive integers such that their sum is 51 .
First $\rightarrow x \quad \rightarrow \underbrace{\text { First }}+\underbrace{\text { Second }}=51$
Second $\rightarrow x+1$

$$
x+x+1=51
$$

$$
\{25 \Leftrightarrow 26
$$

$$
\begin{aligned}
& 12,13,14,15, \ldots \\
& 27,28,29,30, \ldots . \\
& -15,-14,-13,-12, \ldots \\
& x, x+1, x+2, x+3, \cdots \\
& \begin{array}{ccc}
d & b, & t \\
109, & 110,111,112, \ldots
\end{array}
\end{aligned}
$$

Find two cons. integers such that 4 times the first one is equal to 108 reduced by 3 times the second one

First $\rightarrow x$
Second $\rightarrow x+1$

$$
15 \dot{16}
$$

$$
4 \cdot \text { First }=108-3 \cdot \text { Second }
$$

$$
4 x=108-3(x+1)
$$

$$
x=15
$$

Perimeter of a triangle is 72 in .
Three sides are three consecutive integers.
find all three sides.

$$
\begin{gathered}
P=72 \\
a+b+c=72 \\
\left.\frac{p}{x}+\frac{p}{x+2}+x+1\right]=72 \\
\vdots \\
x=23
\end{gathered}
$$

$$
\left\{\begin{array}{c}
23 \mathrm{in}, 24 \mathrm{in}, \text { and } \\
25 \mathrm{in} .
\end{array}\right\}
$$

Find two consecutive integers such that the difference between 5 times the Smaller one and 3 times the larger one is equal to 91.

$$
\text { Smaller } \rightarrow x
$$

$$
\text { Larger } \rightarrow x+1
$$

$$
\begin{gathered}
\text { 5. Smaller -3• larger }=91 \\
5 x-3(x+1)=91 \\
x=47
\end{gathered}
$$

Consecutive Even Integers:

$$
\begin{aligned}
& 18,20,22,24, \cdots \\
& 82,84,86,88, \ldots \\
& 100,102,104,106, \ldots \\
& -34,-32,-30,-28, \cdots \\
& x, x+2, x+4, x+6
\end{aligned}
$$

find two consecutive even integers such that their som is 78.

First $\rightarrow x$
Second $\rightarrow x+2$

$$
\begin{gathered}
\text { first }+ \text { Second }=78 \\
x+x+2=78 \\
\vdots \\
x=38
\end{gathered}
$$

The dimensions of a rectangle are two cons. even integers.
find its area if the perimeter is 44 m .

$$
\begin{gathered}
2 L+2 w=44 \\
2(x+2)+2(x)=44 \\
\vdots \\
x=10
\end{gathered}
$$

$$
10 \mathrm{~m} \text { by } 12 \mathrm{~m} \text {. }
$$

$$
A=120 \mathrm{~m}^{2}
$$

Use the right triangle below with Perimeter 24 cm and sides are three cons. even integers. Find its area.

$$
\begin{gathered}
P=24 \\
a+b+c=24 \\
x+x+2+x+4=24 \\
\vdots \\
x=6
\end{gathered}
$$

$$
A=\frac{b \cdot h}{2}=\frac{8 \cdot 6}{2}=24 \mathrm{~cm}^{2}
$$

In triangle $A B C$, the measure of three angles are three cons. even integers. find all three angles. Hint: The Sum of
 all three interior angles in any triangle is 180°.

$$
\begin{gathered}
A+B+C=180^{\circ} \\
x+x+2+x+4=180 \\
\vdots \\
x=58
\end{gathered}
$$

Consecutive odd integers:

$$
\begin{aligned}
& 13,15,17,19, \ldots \\
& 1,3,5,7, \ldots \\
& 57,59,61,63, \ldots \\
& -43,-41,-39,-37, \ldots \\
& x, x+2, x+4, x+6, \ldots . x \text { must be } \\
& \text { odd. }
\end{aligned}
$$

find two cons. odd integers such that their Sum is 100.

First $\rightarrow x$
Second $\rightarrow x+2$

$$
x+x+2=100
$$

\vdots

$$
x=49
$$

Dimensions: Cons. odd
Perimeter 72 ft .
find the length

$$
\begin{aligned}
& 2 L+2 W=72 \\
& 2(x+2)+2(x)=72
\end{aligned}
$$

$$
\sim!
$$

Find two cons. odd
integers such that
5 times the smaller one is equal to twice the larger one increased by 53.

Smaller $\rightarrow x$
Larger $\rightarrow x+2$

$$
\begin{aligned}
5 \cdot S_{\text {mailer }} & =2 \cdot \text { larger }+53 \\
5 x \quad & =2(x+2)+53 \\
\vdots & x=19 \quad\{19 \text { \& 21 }
\end{aligned}
$$

Agenda for Tuesday:

1) Collect WP 6 @ 6:00 AM
2) lecture on Graphs
3) More ward problems
