

Lines

$$\chi = 0$$

$$\chi = 4$$
,

$$\chi = -2$$

$$\chi - 3 = 0$$

$$7+5=\frac{3}{5}(x-3)$$

3) S/ant

Slant lines:

Standard 7y=21,
$$y=\frac{-3}{5}x+4$$
, Slope-Int

 $y + 7 = \frac{-1}{2}(x-4)$ Point-Slope

Slope m is ratio of Rise to Run

$$m = \frac{20}{3R}$$
 2 units up $\stackrel{?}{\epsilon}$ 3 units right

 Run
 $m = -\frac{3}{5} = \frac{-3}{5}$ Run

Slope m is ratio of Rise to Run

 $m = \frac{3}{5} = \frac{-3}{5}$ Run

 $m = \frac{3}{5} = \frac{-3}{5}$ Run

Sunits down $\stackrel{?}{\epsilon}$ 5 units right.

$$m = -\frac{3}{5} = -\frac{3}{50}$$
 Run

$$m=4=\frac{4d-Rise}{1d-Ron}$$
 $m=-2=\frac{-2}{1}d-Ron$

$$m=-2=\frac{-2}{1}$$
 Rise

Draw a line that contains (-4,2) with

Slope $\frac{3}{5}$.

Draw two lines with Same slope $\frac{2}{5}$, one contains (0,4), another one contains (5,0).

Solve Sor y, Simplify

$$3+3 = \frac{2}{3}(x-6)$$
 $3+3 = \frac{2}{3}x - \frac{2}{3} = \frac{2}{3}x$
 $3+3 = \frac{2}{3}x - 4$
 $3+$

Solve
$$3x + 8 \le 5x + 12$$

 $3x - 5x \le 12 - 8$
 $-2x \le 4$ 1) S.B.N. $\{x \mid x \ge -2\}$
 $\frac{-2}{-2}x \ge \frac{4}{-2}$ 2) graphing
 $\frac{-2}{-2}x \ge \frac{4}{-2}$ 3) I.N. $[-2,\infty)$

Solve
$$-5 \le 3x + 1 < 16$$

 $-5 - 1 \le 3x + 1 - 1 < 16 - 1$
 $-6 \le 3x < 15$
 $\frac{-6}{3} \le \frac{3}{3}x < \frac{15}{3}$
 $-2 \le x < 5$
(DS.B.N. ② Graph ③ I.N. $\{x \mid -2 \le x < 5\}$ $\{x \mid -2 \le x < 5\}$

Solve
$$\frac{1}{4}x - \frac{5}{6} > \frac{2}{3}x + \frac{1}{2}$$
 Hint: Use LCD to clear Fractions.

LCD = 12

 $\frac{3}{2} \cdot \frac{1}{4}x - \frac{2}{2} \cdot \frac{5}{2} > \frac{1}{2} \cdot \frac{2}{3}x + \frac{1}{2} \cdot \frac{1}{2}$
 $\frac{3}{2}x \cdot \frac{1}{4}x - \frac{1}{2}x \cdot \frac{5}{6} > \frac{1}{2}x \cdot \frac{2}{3}x + \frac{1}{2} \cdot \frac{1}{2}$
 $\frac{3}{2}x \cdot \frac{1}{4}x - \frac{1}{2}x \cdot \frac{5}{6} > \frac{1}{2}x \cdot \frac{2}{3}x + \frac{1}{2} \cdot \frac{1}{2}$
 $\frac{3}{2}x \cdot \frac{1}{4}x - \frac{1}{2}x \cdot \frac{5}{6} > \frac{2}{3}x + \frac{1}{2} \cdot \frac{1}{4}$
 $\frac{3}{2}x \cdot \frac{1}{4}x - \frac{1}{2}x \cdot \frac{5}{2} > \frac{1}{2}x \cdot \frac{1}{$

-2
$$\langle X \leq 4 \rangle$$

(1) write in S.B.N. $\{X\}$ -2 $\langle X \leq 4 \}$

(2) Geraph $\{X\}$ -2 $\{X\}$ -2 $\{X\}$ $\{X\}$ -2 $\{X\}$ -2

Is -3 a Solution of
$$|2x-4|=10$$
?
 $|2(-3)-4|=10$
 $|-6-4|=10$
 $|-10|=10$
 $|0=10$

Perimeter of a rectangle is 148 ft.

Its length is
$$2 \text{ ft}$$
 longer than 3 times its width. Find the measure of its length.

$$P = 148$$

$$W = X$$

$$2L + 2W = 148$$

$$2(3x+2) + 2(X) = 148$$

$$L = 3(18) + 2$$

$$= 56$$

$$56 \text{ ft.}$$

$$\chi = 18$$

$$2.5 x = 8(400)$$

$$\chi = \frac{8(400)}{2.5} \quad \chi = 1280$$
(1280 miles)

what percent
$$0.5 (400)$$
 is 700 ?

$$\frac{P}{100} = \frac{700}{400}$$

$$400 P = 100 (700)$$

$$P = 175$$

Simplify
$$-\frac{3}{4}(8x^{2}-4x+\frac{4}{3})+7x^{2}-3x+1$$

$$=\frac{3}{4}\cdot x^{2}x^{2}-\frac{3}{4}\cdot (-x^{2}x)-\frac{3}{4}\cdot \frac{4}{3}+7x^{2}-3x+1$$

$$=-6x^{2}+3x-1+7x^{2}-3x+1=x^{2}$$
Caraph [-4,6) on the number-line Sys.

S.B.N. $\{x\}-4 \le x \le 6\}$

Graph
$$[-3,\infty)$$
 on the number line System.

Give your answer in S.B.N.

 $\{x \mid x \geq -3\}$

John has In Coins
Nickels, Dimes, and Quarters only.
The number of dimes is twice the # of rickels.
The number of quarters is I more than three times the # of rickels.

How much money does John have?

Nickels

Dimes

2

3x+1

```
Consecutive Integers:

12, 13, 14, 15, ----

27, 28, 29, 30, ----

-15, -14, -13, -12, ----

X, x+1, x+2, x+3, ----

\frac{1}{109}, \frac{1}{10}, \frac{1}{11}, \frac{1}{12}, ----
```

Sind two consecutive integers such that

Their Sum is 51.

First
$$+ x$$

Second $\rightarrow x+1$
 $x + x+1 = 51$
 $x + x + 2 = 51$

Find two cons. integers such that

4 times the first one is equal to

108 reduced by 3 times the second one

First
$$\rightarrow x$$

Second $\rightarrow x+1$
 $4x = (08-3)(x+1)$
 $x=15$

Perimeter of a triangle is 72 in.

Three Sides are three Consecutive integers.

Sind all three Sides.

$$P = 72$$
 $A + b + C = 72$
 $A + b$

Find two Consecutive integers such that

the difference between 5 times the

Smaller one and 3 times the larger one is

equal to 91. 5.Smaller - 3.larger = 91 5maller + x 5x - 3(x + 1) = 91Larger + x + 1 x = 47

Consecutive Even Integers: 18, 20, 22, 24, --- 82, 84, 86, 88, --- 100, 102, 104, 106, -----34, -32, -30, -28, ---- χ , $\chi + 2$, $\chi + 4$, $\chi + 6$ $\chi \rightarrow \text{event}$

Find two consecutive even integers such that their sum is 78.

First
$$\rightarrow x$$

Second $\rightarrow x+2$
 $x + x+2 = 78$
 $x + x+3 = 78$

Consecutive odd integers:

$$\chi$$
 , $\chi+2$, $\chi+4$, $\chi+6$, χ must be odd.

find two cons. odd integers such that their sum is 100.

$$\chi + \chi + 2 = 100$$

Second $\rightarrow x+2$

Dimensions: Cons. odd Perimeter 72ft.

Sind the length

2L + 2W = 72

$$2(x+2) + 2(x) = 72$$

The length is
Find two cons. odd 219 St.
integers such that
5 times the Smaller one is equal to
twice the larger one increased by 53.